Social Learning Mechanisms for Robots

نویسندگان

  • Andrea L. Thomaz
  • Maya Cakmak
چکیده

There is currently a surge of interest in service robotics—a desire to have robots leave the labs and factory floors to help solve critical issues facing our society, ranging from eldercare to education. A critical issue is that we cannot preprogram these robots with every skill they will need to play a useful role in society—they will need the ability to interact with ordinary people and acquire new relevant skills after they are deployed. Using human input with Machine Learning systems is not a new goal, but we believe that the problem needs reframing before the field will succeed in building robots that learn from everyday people. Many related works focus on machine performance gains; asking, “What can I get the person do to help my robot learn better?” In an approach we call, Socially Guided Machine Learning (SG-ML), we formulate the problem as a human-machine interaction; asking, “How can I improve the dynamics of this tightly coupled teacher-learner system?” With the belief that machines meant to learn from people can better take advantage of the ways in which people naturally approach teaching, our research aims to understand and computationally model mechanisms of human social learning in order to build machines that are natural and intuitive to teach. In this paper we focus on a particular aspect of SG-ML. When building a robot learner that takes advantage of human input, one of the design questions is “What is the right level of human guidance?” One has to determine how much and what kind of interaction to require of the human. We first review prior work with respect to these questions, and then summarize three recent projects. In the first two projects we investigate self versus social learning and demonstrate ways in which the two are mutually beneficial. In the third

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Exploring Social Robots as a tool for Special Education to teach English to Iranian Kids with Autism

This case study investigates the effects of Robot Assisted Language Learning (RALL) on English vocabulary learning and retention of Iranian children with high-functioning autism. Two groups of three male students (6-10 years old) with high-functioning autism participated in the current study. The humanoid robot NAO was used as a teacher assistant to teach English to the RALL group. Both RALL an...

متن کامل

On the design of neuro-controllers for individual and social learning behaviour in autonomous robots: an evolutionary approach

In Biology/Psychology the capability of natural organisms to learn from the observation/interaction with conspecifics is referred to as social learning. Roboticists have recently developed an interest on social learning, since it might represent an effective strategy to enhance the adaptivity of a team of autonomous robots. In this study, we show that a methodological approach based on artifcia...

متن کامل

Using BELBIC based optimal controller for omni-directional threewheel robots model identified by LOLIMOT

In this paper, an intelligent controller is applied to control omni-directional robots motion. First, the dynamics of the three wheel robots, as a nonlinear plant with considerable uncertainties, is identified using an efficient algorithm of training, named LoLiMoT. Then, an intelligent controller based on brain emotional learning algorithm is applied to the identified model. This emotional l...

متن کامل

Exploiting social partners in robot learning

Social learning in robotics has largely focused on imitation learning. Here we take a broader view and are interested in the multifaceted ways that a social partner can influence the learning process. We implement four social learning mechanisms on a robot: stimulus enhancement, emulation, mimicking, and imitation, and illustrate the computational benefits of each. In particular, we illustrate ...

متن کامل

Introduction: the constructive interdisciplinary viewpoint for understanding mechanisms and models of imitation and social learning

Social learning, matched behaviour and imitation are important classes of mechanisms whereby knowledge may be transferred between agents (biological, computational or robotic autonomous systems). They comprise key mechanisms necessary for the evolution and development of social intelligence and culture. Researchers from across disciplines have begun coming together to understand these mechanism...

متن کامل

Synchrony and perception in robotic imitation across embodiments

Social robotics opens up the possibility of individualized social intelligence in member robots of a community, and allows us to harness not only individual learning by the individual robot, but also the acquisition of new skills by observing other members of the community (robot, human, or virtual). We describe ALICE (Action Learning for Imitation via Correspondences between Embodiments), an i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009